If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x^2+20000=0
We add all the numbers together, and all the variables
-15x^2+20000=0
a = -15; b = 0; c = +20000;
Δ = b2-4ac
Δ = 02-4·(-15)·20000
Δ = 1200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200000}=\sqrt{40000*30}=\sqrt{40000}*\sqrt{30}=200\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{30}}{2*-15}=\frac{0-200\sqrt{30}}{-30} =-\frac{200\sqrt{30}}{-30} =-\frac{20\sqrt{30}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{30}}{2*-15}=\frac{0+200\sqrt{30}}{-30} =\frac{200\sqrt{30}}{-30} =\frac{20\sqrt{30}}{-3} $
| 8x+12x-10=5(4x-10) | | 2+r/22=11 | | 2r/22=11 | | Y=$1.25x-$15 | | 10^x.10^x+2=1000 | | 10x-(-5)=15 | | 7d-4d(d+8)=-8 | | 10x.10^x+2=1000 | | 9(2d-4)=21 | | 10x.10x+2=1000 | | 10+3x=120 | | -2x-(-5)=25 | | 2k+5=k | | 56(2x-9)=3 | | (4x+1)^3+9=84 | | (4x+1)^3=75 | | -(-x+3)=4x-15 | | 3(5n+5)-1=8n-35 | | 2.x2+6=14 | | 3a-2+14=8-6a | | 0.5x-1.45=2.1 | | -(p-3)=-17-6p | | 5/6(m)=-30 | | 2x-4=-3x=6 | | u+32=6u-58 | | 4y-20=6y-40 | | 5(r-7)=-39+4r | | 3x+3+8x+2=22x-12-3x+1 | | 3z+4=5z-20 | | -15-16r+1=-1-16r | | 4(3^2x+1)=64. | | 5/3x—9=-4 |